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ABSTRACT
Despite the fact that many 3D human activity benchmarks being
proposed, most existing action datasets focus on the action recog-
nition tasks for the segmented videos. There is a lack of standard
large-scale benchmarks, especially for current popular data-hungry
deep learning based methods. In this paper, we introduce a new
large scale benchmark (PKU-MMD) for continuous skeleton-based
human action understanding and cover a wide range of complex
human activities with well annotated information. PKU-MMD con-
tains 1076 long video sequences in 51 action categories, performed
by 66 subjects in three camera views. It contains almost 20,000
action instances and 5.4 million frames in total. Our dataset also
provides multi-modality data sources, including RGB, depth, In-
frared Radiation and Skeleton. To the best of our knowledge, it is
the largest skeleton-based detection database so far. We conduct ex-
tensive experiments and evaluate different methods on this dataset.
We believe this large-scale dataset will benefit future researches on
action detection for the community.

KEYWORDS
Video Analysis; Action Detection; Skeleton-Based Action Under-
standing; Video Benchmark

1 INTRODUCTION
The tremendous success of deep learning have made data-driven
learning methods get ahead with surprisingly superior performance
for many computer vision tasks.
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This methods all need a large scale dataset for prior knowledge
and feature learning. Activity understanding which contains several
tasks like action recognition and action detection is still challenging.
For RGB dataset, several famous large scale datasets have been
collected to boost the research in this area [3, 22]. ActivityNet [3]
is a superior RGB video dataset gathered from Internet media like
YouTube with well annotated label and boundaries. Nevertheless,
3D action dataset is hard to obtain due to the lack of well annotated
activities in 3D modal on the Internet.

Thanks to the prevalence of the affordable color-depth sens-
ing cameras like Microsoft Kinect, and the capability to obtain
depth data and the 3D skeleton of human body on the fly, 3D ac-
tivity analysis has drawn great attentions. As an intrinsic high
level representation, 3D skeleton is valuable and comprehensive
for summarizing a series of human dynamics in the video, and
thus benefits the more general action analysis. Besides succinctness
and effectiveness, it has a significant advantage of great robustness
to illumination, clustered background, and camera motion. How-
ever, as a kind of popular data modality, 3D action analysis suffers
from the lack of large-scale benchmark datasets. To the best of our
knowledge, existing 3D action benchmarks have limitations in two
aspects.

• Shortage in large action detection datasets: Action detec-
tion plays an important role in video analytics and can be effectively
studied through analysis and learning from massive samples. How-
ever, most existing skeleton datasets mainly target at the task of
action recognition for segmented videos. There is a lack of large
scale skeleton dataset for action detection. Additionally, previous
detection benchmarks only contain a small number of actions in
each video even in some large scale RGB datasets [3]. There is
no doubt that more actions within one untrimmed video will pro-
mote the robustness of action detection algorithms based on the
sequential action modeling and featuring.

• Limited variations: Existing models also suffer over-fitting
problems due to limited action categories and sample variations.
On the one hand, more action categories lead to ambiguity in some
actions (e.g. drinking vs. eating), making the dataset more challeng-
ing and more consistent with real life. On the other hand, most
datasets are collected under solo view with actors facing to the
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Figure 1: PKUMulti-Modalilty Dataset is a large-scalemulti-
modalities action detection dataset. This dataset contains 51
action categories, performed by 66 distinct subjects in 3 cam-
era views.
camera, resulting in limited methods for multi-view analysis. The
varieties of subjects and camera views will lead to more intra-class
variation.

To overcome these limitations, we develop a new large scale con-
tinuous multi-modality 3D human activity dataset (PKU-MMD)1 for
facilitating further study on human activity understanding, espe-
cially action detection. As shown in Figure 1, our dataset contains
1076 videos composed by 51 action categories, and each of the
video contains more than twenty action instances performed by
66 subjects in 3 camera views. The total number of our dataset is
3,000 minutes and 5,400,000 frames. Although this paper focus on
skeleton-based action detection, we provide four raw modalities:
RGB frame, depth map, skeleton data, and infrared for further study.
More modalities can be further calculated such as optical flow and
motion vector.

Besides, we propose a new 2D protocol to evaluate the precision-
recall curve of each method in a much straightforward manner. Tak-
ing over-lapping ratio and detection confidence into account jointly,
each algorithm can be evaluated with a single value, instead of a
list of mean average precisions with corresponding overlap ratios.
Several experiments are implemented to test both the capabilities
of different approaches for action detection and the combination
performance of different modalities.

We organize the paper as follows. We first review the develop-
ment of action understanding and summarize existing benchmarks
for 3D activity analysis in Sec. 2. In Sec. 3, we present the details
of our dataset with collection and annotation details. Experimen-
tal details about proposed protocols and experimental results are
shown in Sec. 4. Concluding remarks are given in Sec. 5.

2 RELATEDWORK
In this section, we briefly summarize the development of activ-
ity analysis. As a part of pattern recognition, activity analysis
1http://www.icst.pku.edu.cn/struct/Projects/PKUMMD.html

shows a common way of development in machine learning, where
large scale benchmarks share familiar significance with magnificent
methods. Here, we briefly introduce a series of benchmarks and
approaches. For a more extensive conclusion of activity analysis
we refer to corresponding survey papers [1, 4, 5, 48].

2.1 Development of Activity Analysis
Early activity analysis mainly focuses on action recognition which
consists of a classification task for segmented videos. Traditional
methods mainly focus on hand-crafting features for video represen-
tation. Densely tracking points in the optical flow field with more
features like Histogram of Oriented Gradient (HOG), Histogram
of Flow (HOF) and Motion Boundary Histograms (MBH) encoded
by Fisher Vector [20, 36] achieved a good performance. Recently,
deep learning has been exploited for action recognition [27, 41].
Deep approaches automatically learn robust feature representations
directly from raw data and recognize actions synchronously with
deep neural networks [32]. To model temporal dynamics, Recur-
rent Neural Network (RNN) have also been exploited for action
recognition. In [8, 45], CNN layers are constructed to extract visual
features while the followed recurrent layers are applied to handle
temporal dynamics.

For action detection, existingmethodsmainly utilize either sliding-
window scheme [26, 39], or action proposal approaches [40]. These
methods usually have low computational efficiency or unsatisfac-
tory localization accuracy due to the overlapping design and un-
supervised localization approach. Most methods are designed for
offline action detection [26, 33, 43]. However, in many new works,
recognizing the actions on the fly before the completion of the ac-
tion is well studied by a learning formulation based on a structural
SVM [11], or a non-parametric moving pose framework [47] and a
dynamic integral bag-of-words approach [23]. LSTM is also used
for online action detection and forecast which provides frame-wise
class information. It forecasts the occurrence of start and end of
actions.

As the fundamental requirement of research, videos source also
determines the branches of action analysis. Early action analysis
dataset mainly focuses on home surveillance activities like drinking
or waving hands. The analysis of those simple indoor activities are
the start of action recognition process. The advantages of this kind
of videos lie in that they are usually easy and cheap to capture.
However, collecting a large scale benchmark with cameras can
be troublesome. Fortunately, the rapid development of Internet
technology and data mining algorithms enable a new approach of
collecting dataset from Internet third-way media like YouTube [3,
29]. As a result, RGB-based datasets achieve a grant level with
hundreds of action labels and video sources in TB level. Recently,
there are also several works focus on collecting different datasets of
action type like TV-series [7], Movies [14] and Olympic Games [13].

With the launch of Microsoft Kinect, the diversity of action
source becomes possible. Different input sources have been dis-
cussed such as Depth data and Skeleton data. Depth data provides a
3D information which is beneficial for action understanding. Skele-
ton, as a kind of high level representation of human body, can
provide valuable and condensed information for recognizing ac-
tions. As Kinect devices provide a real-time algorithm to generate
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Table 1: A comparison among different skeleton-based detection datasets.

Datasets Classes Videos Labeled
Instances

Actions
per Video Modalities Temporal

Localization Year

MSR-Action3D [15] 20 567 567 1 D+Skeleton No 2010
RGBD-HuDaAct [18] 13 1189 1189 1 RGB+D No 2011
MSR-DailyActivity [37] 16 320 320 1 RGB+D+Skeleton No 2012

Act4 [6] 14 6844 6844 1 RGB+D No 2012
MHAD [19] 11 660 660 1 RGB+D+Skeleton No 2013

Multiview 3D Event [42] 8 3815 3815 1 RGB+D+Skeleton No 2013
Northwestern-UCLA [38] 10 1475 1475 1 RGB+D+Skeleton No 2014
UWA3D Multiview II [21] 30 1075 1075 1 RGB+D+Skeleton No 2015

NTU RGB+D [24] 60 56880 56880 1 RGB+D+IR+Skeleton No 2016
G3D [2] 20 210 1467 7 RGB+D+Skeleton Yes 2012

SBU Kinect interaction [46] 8 21 300 14.3 RGB+D+Skeleton Yes 2012
CAD-120 [31] 20 120 ∼1200 ∼ 8.2 RGB+D+Skeleton Yes 2013

compostable Activities [17] 16 693 2529 3.6 RGB+D+Skeleton Yes 2014
Watch-n-Patch [44] 21 458 ∼2500 2∼7 RGB+D+Skeleton Yes 2015

OAD [16] 10 59 ∼700 ∼12 RGB+D+Skeleton Yes 2016
PKU-MMD 51 1076 21545 20.02 RGB+D+IR+Skeleton Yes 2017

skeleton data from the information of RBG, depth, and infrared,
skeleton becomes an ideal source to support real-time algorithm
and to be transferred and utilized on some mobile devices like
robots or telephones.

Despite of the diversity of source, action understanding still
faces several problems, among which the top priority is the accu-
racy problem. Another problem is the poor performance of cross-
data recognition. That is, existing approaches or machine learning
models achieve good performances with training and test sets in
similar environments conditions. Open domain action recognition
and detection is still challenging.

2.2 3D Activity Understanding Approaches
For skeleton-based action recognition, many generative models
have been proposed with superior performance. Those methods
are designed to capture local features from the sequences and then
to classify them by traditional classifiers like Support Vector Ma-
chine (SVM). Those local features includes rotations and transla-
tions to represent geometric relationships of body parts in a Lie
group [34, 35], or the covariance matrix to learn the co-occurrence
of skeleton points [12]. Additionally, Fourier Temporal Pyramids
(FTP) or Dynamic Time Warping (DTW) are also employed to
temporally align the sequences and to model temporal dynamics.
Furthermore, many methods [10, 25] divide the human body into
several parts and learn the co-occurrence information, respectively.
A Moving Pose descriptor [47] is proposed to mine key frames
temporally via a k-NN approach in both pose and atomic motion
features.

Most methodsmentioned above focus on designing specific hand-
crafted features and thus being limited in modeling temporal dy-
namics. Recently, deep learning methods are proposed to learn
robust feature representations and to model the temporal dynam-
ics without segmentation. In [9], a hierarchical RNN is utilized

to model the temporal dynamics for skeleton based action recog-
nition. Zhu et al. [49] proposed a deep LSTM network to model
the inherent correlations among skeleton joints and the temporal
dynamics in various actions. However, there are few approaches
proposed for action detection on 3D skeleton data. Li et al. [16]
introduced a Joint Classification Regression RNN to avoid sliding
window design which demonstrates state-of-the-art performance
for online action detection. In this work, we propose a large-scale
detection benchmark to promote the study on continuous action
understanding.

2.3 3D Activity Datasets
We have also surveyed other tens of well-designed action datasets
which greatly improved the study of 3D action analysis. These
datasets have promoted the construction of standardized protocols
and evaluations of different approaches. Furthermore, they often
provide some new directions in action recognition and detection
previously unexplored. A comparison among several datasets and
PKU-MMD is given in Table 1.

G3D [2] is designed for real-time action recognition in gaming
containing synchronized videos. As the earliest activity detection
dataset, most sequences of G3D contain multiple actions in a con-
trolled indoor environment with a fixed camera, and a typical setup
for gesture based gaming.

CAD-60 [30] & CAD-120 [31] are two special multi-modality
datasets. Compared to CAD-60, CAD-120 provides extra labels of
temporal locations. However, the limited number of video instants
is their downside.

Watch-n-Patch [44] and Compostable Activities [17] are the first
datasets focusing on the continues sequences and the inner combi-
nation of activities in supervised or unsupervised methods. Those
consist of moderate number of action instances. Also, the number
of instance actions in one video is limited and thus cannot fulfill
the basic requirement for deep network training.
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OAD [16] dataset is a new dataset focusing on online action
detection and forecast. 59 videos were captured by Kinect v2.0
devices which composed of daily activities. This dataset proposes a
series of new protocols for 3D action detection and raises an online
demand.

However, as the quick development of action analysis, these
datasets are not able to satisfy the demand of data-driven algo-
rithms. Therefore, we collect PKU-MMD dataset to overcome their
drawbacks from the perspectives in Table 2.

Table 2: The desirable properties of PKU-MMD dataset.

Properties Features

Large Scale
Extensive action categories.
Massive samples for each class.

Diverse Modality
Three camera views.
Sufficient subject categories.
Multi-modality (RGB, depth, IR, etc.).

Wide Application
Continuous videos for detection.
Inner analysis of context-related actions.

3 THE DATASET
3.1 PKU-MMD Dataset
PKU-MMD is our new large-scale dataset focusing on long continu-
ous sequences action detection and multi-modality action analysis.
The dataset is captured via the Kinect v2 sensor, which can collect
color images, depth images, infrared sequences and human skeleton
joints synchronously. We collect 1000+ long action sequences, each
of which lasts about 3∼4 minutes (recording ratio set to 30 FPS)
and contains approximately 20 action instances. The total scale
of our dataset is 5,312,580 frames of 3,000 minutes with 20,000+
temporally localized actions.

We choose 51 action classes in total, which are divided into
two parts: 43 daily actions (drinking, waving hand, putting on the
glassed, etc.) and 8 interaction actions (hugging, shaking hands,
etc.). Table 3 illustrates more details on action categories.

We invite 66 distinct subjects for our data collection. Each sub-
jects takes part in 4 daily action videos and 2 interactive action
videos. The ages of the subjects are between 18 and 40. We also
assign a consistent ID number over the entire dataset in a similar
way in [24].

To improve the sequential continuity of long action sequences,
the daily actions are designed in a weak connection mode. For
example, we design an action sequence of taking off shirt, taking
off cat, drinking waterand sitting down to describes the scene that
occur after going back home. Note that our videos only contain one
part of the actions, either daily actions or interaction actions. We
design 54 sequences and divide subjects into 9 groups, and each
groups randomly choose 6 sequences to perform.

For the multi-modality research, we provide 5 categories of
resources: depth maps, RGB images, skeleton joints, infrared se-
quences, and RGB videos. Depth maps are sequences of two dimen-
sional depth values in millimeters. To maintain all the information,
we apply lossless compression for each individual frame. The reso-
lution of each depth frame is 512 × 424. Joint information consists

Capture Area

Camera#1

Camera#2

Camera#3

45o

Figure 2: Camera setting for multi-view video recording of
PKU-MMD dataset. Three camera views are included. Note
that each subject will perform an action instance toward a
random camera.

of 3-dimensional locations of 25 major body joints for detected and
tracked human bodies in the scene. We further provide the confi-
dence of each joints point as appendix. RGB videos are recorded in
the provided resolution of 1920 × 1080. Infrared sequences are also
collected and stored frame by frame in 512 × 424.

3.2 Developing the Dataset
Building a large scale dataset for computer vision task is tradition-
ally a difficult task. To collect untrimmed videos for detection task,
the main time-consuming work is labeling the temporal bound-
aries. The goal of PKU-MMD is to provide a large-scale continuous
multi-modality 3D action dataset, the items of which contain a
series of compact actions. Thus we combine traditional recording
approaches with our proposed validation methods to enhance the
robustness of our dataset and improve the efficiency.

We now fully describe the collecting and labeling process for
obtaining PKU-MMD dataset. Inspired by [24], we firstly capture
long sequences from Kinect v2 sensors with a well-designed stan-
dards. Then, we rely on volunteers to localize the occurrences of
dynamic and verify the temporal boundaries. Finally, we design a
cross-validation system to obtain labeling correction confidence
evaluation.

•Recording Multi-Modality Videos: After designing several
action sequences, we carefully choose a daily-life indoor environ-
ment to capture the video samples where some irrelevant variables
are fully considered. Considering that the temperature changes
will lead to the deviation of infrared sequences, we fully calculate
the distance among the action occurrence, windows and Kinect
devices. Windows are occluded for illumination consistency. We
use three cameras in the fixed angle and height at the same time
to capture three different horizontal views. We set up an action
area with 180cm as length and 120cm as width. Each subject will
perform each action instances in a long sequence toward a random
camera, and it is accepted to perform two continuous actions to-
ward different cameras. The horizontal angles of each camera is
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Table 3: A detailed list about 51 action categories used in PKU-MMD dataset.

Interaction with items(13)

drop pointing to something with finger check time (from watch)
pickup put something inside pocket playing with phone/tablet

taking a selfie use a fan (with hand or paper) reading
writing make a phone call/answer phone typing on a keyboard

tear up paper

Dressing related(7)
take off glasses take off jacket take off a hat/cap
wear on glasses take out something from pocket put on a hat/cap
wear jacket

Home related(5) drink water brushing hair wipe face
eat meal/snack brushing teeth

Health related(4) touch head (headache) touch chest (stomachache/heart pain) touch back (backache)
touch neck (neckache)

Interaction with person(8)
kicking other person point finger at the other person hugging other person
pushing other person giving something to other person pat on back of other person

handshaking punching/slapping other person

others(14)

bow cross hands in front (say stop) hand waving
cheer up hopping (one foot jumping) clapping
jump up rub two hands together standing up
salute kicking something falling

sitting down throw

−45◦, 0◦, and +45◦, as shown in Figure 2, with a height of 120cm.
An example of our multi-modality data can be found in Figure 4.

•LocalizingTemporal Intervals:At this stages, captured video
sources are labeled on frame level. We employ volunteers to review
each video and give the proposal temporal boundaries of each ac-
tion presented in the long video. In order to keep high annotation
quality, we merely employ proficient volunteers who have expe-
riences in labeling temporal actions. Furthermore, there will be a
deviation for the temporal labels of a same action from different
persons. Thus we divide actions into several groups and the actions
in each group are labeled by only one person. At the end of this pro-
cess, we have a set of verified untrimmed videos that are associated
to several action intervals and label correspondingly.

•Verifying and Enhancing Labels: Unlike recognition task
which merely need one label for an trimmed video clip, the proba-
bility of error on temporal boundaries will be much higher. More-
over, during the labeling process we observe that approximate
10-frames expansion of action interval is sometimes accepted in
some instance. To further improve the robustness of our dataset,
we propose a system of labeling correction confidence evaluation
to verify and enhance the manual labels. Firstly, we design basic
evaluation protocol of each video, like If there is overlap of actions or
Is the length of an action reasonable. Thanks to multi-view capturing,
we then use cross-view method to evaluate and verify the data label.
The protocol guarantees the consistency of videos of each view.

4 EXPERIMENTS
4.1 Evaluation Protocols
To obtain a standard evaluation for the results on this benchmark,
we define several criteria for the evaluation of the precision and
recall scores in detection tasks. We propose two dataset partition
settings with several precision protocols.

To evaluate the precision on the proposed action intervals with
confidences, two tasks must be considered. One is to determine
if the proposed interval is positive, and the other is to evaluate
the performance of precision and recall. For the first task, there
is a basic criterion to evaluate the overlapping ratio between the
predicted action interval I and the ground truth interval I∗ with a
threshold θ . The detection interval is correct when

|I ∩ I∗ |

|I ∪ I∗ |
> θ , (1)

where I ∩ I∗ denotes the intersection of the predicted and ground
truth intervals and I ∪ I∗ denotes their union. So, with θ , the p(θ )
and r (θ ) can be calculated.

•F1-Score:With the above criterion to determine a correction
detection, the F1-score is defined as

F1(θ ) = 2 ·
p(θ ) × r (θ )

p(θ ) + r (θ )
. (2)

F1-score is a basic evaluation criterion regardless of the information
of the confidence of each interval.

•Interpolated Average Precision (AP): Interpolated average
precision is a famous evaluation score using the information of
confidence for ranked retrieval results. With confidence changing,
precision and recall values can be plotted to give a precision-recall
curve. The interpolated precision pinterp at a certain recall level r
is defined as the highest precision found for any recall level r ′ ≥ r :

pinterp (r ,θ ) = max
r ′≥r

p(r ′,θ ). (3)

Note that r is also determined by overlapping confidence θ . The
interpolated average precision is calculated by the arithmetic mean
of the interpolated precision at each recall level.

AP(θ ) =
∫ 1

0
pinterp (r ,θ ) dr . (4)
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Method Cross-view
θ F1 AP mAPa mAPv 2D-AP

JCRRNN 0.1 0.671 0.728 0.699 0.642 0.4600.5 0.526 0.544 0.533 0.473

SVM 0.1 0.399 0.236 0.240 0.194 0.0730.5 0.131 0.031 0.036 0.031

BLSTM 0.1 0.676 0.525 0.545 0.508 0.1870.5 0.333 0.124 0.159 0.139

STA-LSTM 0.1 0.613 0.468 0.476 0.439 0.1800.5 0.316 0.130 0.155 0.134

Method Cross-subject
θ F1 AP mAPa mAPv 2D-AP

JCRRNN 0.1 0.500 0.479 0.452 0.431 0.2880.5 0.366 0.339 0.325 0.297

SVM 0.1 0.332 0.179 0.181 0.143 0.0510.5 0.092 0.016 0.021 0.018

BLSTM 0.1 0.629 0.464 0.479 0.442 0.1640.5 0.291 0.095 0.130 0.108

STA-LSTM 0.1 0.586 0.427 0.444 0.405 0.1560.5 0.284 0.101 0.131 0.116

Table 4: Comparison of results among several approaches on
3D action detection with various metrics.

•Mean Average Precision (mAP): With several parts of re-
trieval set Q , each part qj ∈ Q proposes mj action occurrences
{d1, . . .dmj } and r jk is the recall result of ranked k retrieval results,
then mAP is formulated by

mAP(θ ) =
1
|Q |

|Q |∑
j=1

1
mj

mj∑
k=1

pinterp (r jk ,θ ). (5)

Note that with several parts of retrieval set Q , the AP score (4) is
discretely formulated.

We design two splitting protocols: mean average precision of
different actions (mAPa ) and mean average precision of different
videos (mAPv ).

•2D Interpolated Average Precision: Though several proto-
cols have been designed for information retrieval, none of them
takes the overlap ratio into consideration. We can find that each
AP score and mAP score is associated to θ . To further evaluate the
performance of precisions of different overlap ratios, we now pro-
pose the 2D-AP score which takes both retrieval result and overlap
ratio of detection into consideration:

2D-AP =
∬

r ∈[0,1],θ ∈[0,1]
pinterp (r ,θ ) drdθ . (6)

This section presents a series of evaluation of basic detection
algorithms on our benchmark. Due to the fact that there is few
implementation for 3D action detection, these evaluations also
serve to illustrate the challenge activity detection is and call on
new explorations.

4.2 Experiment Setup
In this part, we implement several detection approaches for the
benchmarking scenarios for the comparison on PKU-MMD dataset.

4.2.1 Dataset Partition Setting. This section introduces the basic
dataset splitting settings for various evaluation, including cross-
view and cross-subject settings.
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Figure 3: Different Precision-Recall curves (overlapping ra-
tio θ is set to 0.2) under different settings with different win-
dow size and stride. L stands for the length of sliding win-
dows.

•Cross-ViewEvaluation: For cross-view evaluation, the videos
sequences from the middle and right Kinect devices are chosen for
training set and the left is for testing set. Cross-view evaluation aims
to test the robustness in terms of transformation (e.g.translation,
rotation). For this evaluation, the training and testing sets have 717
and 359 video samples, respectively.

•Cross-Subject Evaluation: In cross-subject evaluation, we
split the subjects into training and testing groups which consists
of 57 and 9 subjects respectively. For this evaluation, the training
and testing sets have 944 and 132 long video samples, respectively.
Cross-subject evaluation aims to test the ability to handle intra-class
variations among different actors.

4.2.2 Temporal Detection Method. Here we introduce several
approaches for action detection.

•Sliding Window + SVM: Leveraging the insight from the
RGB-based activity detection approaches, we design several slide-
window detection approaches. For the classifier, one basic method
is using SVM classifier which is agility ans easy to train.

•Sliding Window + BLSTM: Due to the ability to model long-
term and short-term dynamics, three stacked bidirectional LSTM
(BLSTM) [49] network has been proved effective to model skeleton-
based activities. The succinctness of skeleton data limit parameter
explosion of LSTM and make it easy to converge.

•Sliding Window + STA-LSTM: Spatial-temporal attention
network [28] is a state-of-the-art work proposed for action recog-
nition with unidirectional LSTM. It proposes a regularized cross-
entropy loss to drive the model learning process which conducts
automatic mining of discriminative joints together with explicitly
learning and allocating the content-dependent attentions to the
output of each frame to boost recognition performance.

•Joint Classification Regression RNN (JCRRNN): Besides
proposing the online action detection task, Li et al. [16] proposed a
Joint Classification Regression RNN which implement frame level
real-time action detection.

4.3 Action Detection Results
In the detection task, the goal is to find and recognize all activity
instances in an untrimmed video. Detection algorithms should
provide the start and end points with action labels. We exploit the
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(a) From top to bottom, these four rows show RGB, depth, skeleton and IR modalities, respectively.

(b) We collect 51 actions performed by 66 subjects, including actions for single and pairs.

Figure 4: Sample frames from PKU-MMD. The top figure shows an example of continuous action detection in multi-modality,
and about 20 action instances can be foundwithin one sequences. The bottomfigure depicts the diversity in categories, subjects
and camera viewpoints.

location annotations of PKU-MMD to compare the performances
of above methods.

As the skeleton is an effective representation, we implement
several experiments to evaluate the ability to model dynamics and
activity boundaries localizing. Table 4 shows the comparison of
different combination of skeleton representation and temporal fea-
turing methods. SVM performs worst because it only learn a linear
transformation and weak to model high-level semantics. STA-LSTM
performs worse than BLSTM possibly due to the large margin in
amount of parameters. And STA-LSTM also learn a spatial-temporal
attention of an entire activities thus may vulnerable to sliding-
windows approaches. Joint classification regression RNN achieves
remarkable results, because it utilizes frame-level predictions and
thus is more compatible with stricter localization requirements.

We further analyze the different performances with several
sliding-window approaches. We show Precision-Recall curves of
BLSTM method in Figure 3. The performance is influenced by win-
dow size and stride. When stride is fixed, windows in smaller size
contain less context information while noises can be involved by
larger window size. However, smaller window size always leads to
higher computation complexity. And obviously, too large window
size will mix several dynamics information and confuse classifiers.
So it is essential to balancewindow scale according to dataset, which
illustrates the limitation of sliding window approaches. For stride,
obviously, smaller stride achieves better results due to dense sam-
pling while costing more time. In our following experiments, we try
different settings of window size and stride as a trade-off between
performance and speed. The results of different sliding-window
approaches are shown in Figure 3.
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5 CONCLUSION
In this paper, we propose a large-scale multi-modality 3D dataset
(PKU-MMD) for human activity understanding, especially for ac-
tion detection which demands localizing temporal boundaries and
recognizing activity category. Performed by 66 actors, our dataset
includes 1076 long video sequences, each of which contains 20
action instances of 51 action classes. Compared with current 3D
datasets for temporal detection, our dataset is much larger (3000
minutes and 5.4 million frames in total) and contains much vari-
eties (3 views, 66 subjects) in different aspects. The multi-modality
attribution and larger scale of the collected data enable further
experiments on deep networks like LSTM or CNN. Based on several
detection retrieval protocols, we design a new 2D-AP evaluation for
action detection task which takes both overlapping and detection
confidence into consideration. We also design plenty experiments
to evaluate several detection methods on PKU-MMD benchmarks.
The results show that existing methods are not satisfied in terms of
performance. Thus, large-scale 3D action detection is far from being
solved and we hope this dataset can draw more studies in action
detection methodologies to boost the action detection technology.
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